
1

1

Real Time Programming
(language support 1)

2

Sequential Programming is ”easy”

No essential difference between algorithms and
programs

To describe algorithms as programs, a large
number of programming languages available
e.g. FORTRAN, C, C++, Java, Basic, PL1, Pascal,
Algol60 ...

A program is basically a function
From Input to Output
A sequence of operations on data structures

3

Typical structure of sequential programs

Program Foo(...)

Declaration 1 ----- to introduce identities/variables
and define data structures

Declaration 2 ----- to define ”operations” : procedures and functions
to manopulate the data structures

Main program
(Program body) ------ a sequence of statements or ”operations” to

compute the result (output)

4

Why Concurrent programming ?

Problem decomposition
Each task solves one sub-problem

Structuring or abstraction (in many cases, it is so)
Many problems contain a set of sub-problems
It is just natural to solve/run them
”independently”/concurrently
In theory, you may solve all problems ”sequentially”

Embedded systems: concurrent activities are
everywhere (true concurrency/physical parallelism)

5

Concurrent programming

A concurrent program is a collection of sequential
programs running in parrallel, multi-thread on

single processor or
multiple processors

The sequential parts here are often called a ”task”,
”thread”, or ”process”

P1 || P2 || ... || Pn
Nowadays, most programming languages support
concurrency e.g. Ada, Concurrent Pascal, OO’s like
Java, Simula, Modula 2, SR

6

Why is it so difficult to get ”concurrent programs” correct?

The tasks may communicate with
each other or the ”environment”

The tasks may share the same resources
E.g. Processor, memory etc

The tasks may share ”data” (e.g. global variables)
May be seen as ”shared resources”

It is much more difficult to debug and test!
Test all possible interleaing behaiour?
Test all possible time points?

2

7

Real time programming

It is mostly about ”Concurrent programming”

But not enough, we also need to handle Timing
behaviour of concurrent programs/executions

”timing constraints” on concurrent executions are the
outmost important part of real time programming

8

Cyclic Execution: the classic approach

the first example of real time
programming without ”concurrency”

9

Task Required sample
rate

Processing
time

t1 3ms (333Hz) 0.5ms

t2 6ms (166Hz) 0.75ms

t3 14ms (71Hz) 1.25ms

void main(void)
{

do_init();
while (1)
{

t1();
t2();
t3();
delay_until_cycle_start();

}
}

0ms 3ms 6ms 9ms 12ms

Static cyclic scheduling: example

10

Task Required sample
rate

Processing time

t1 3ms (333Hz) 0.5ms

t2 6ms (166Hz) 0.75ms

t3 14ms (71Hz) 1.25ms

t2 requires 12.5% CPU (0.75/6), uses 25% (4*0.75/12)

t3 requires 9% CPU (1.25/14), uses 42% (4*1.25/12)

add interrupt I with 0.5ms processing time

0ms 3ms 6ms 9ms 12ms

Cyclic scheduling: “overheads”

11

0ms 3ms 6ms 9ms 12ms

Major/minor cyclic scheduling

12ms major cycle containing 3ms minor cycles
t1 every 3ms, t2 every 6ms, t3 every 12ms

t3 still upsampled (10.4% where 9% needed)
time is still allocated for I every task in every cycle

will not always be used, but must be allowed for

12

0ms 3ms 6ms 9ms 12ms

Fitting tasks to cycles

add t4 with 14ms rate and 5ms processing time
12ms cycle has 5.25ms free time...
...but t4 has to be artificially partitioned

3

13

void main(void)
{

do_init();
while(1) {

do_task_t1();
do_task_t2();
do_task_t3();
busy_wait_minor();
do_task_t1(); /* 3ms */

busy_wait_minor();
do_task_t1(); /* 6ms */
do_task_t2();

busy_wait_minor();

do_task_t1(); /* 9ms */

busy_wait_minor();
}

}

Effect of new task at code level
void do_task_t4(void)
{

/* Task functionality */
}

void do_task_t4_1(void)
{

/* first bit */
state_var_1 = x;
state_var_2 = y;
...

}
void do_task_t4_2(void)
{

x = state_var_1;
...
/* second bit */
state_var_3 = a;
state_var_4 = b;
...

}
void do_task_t4_3(void)
{

c = state_var_4;
...
/* third bit */

}

int state_var_1;
int state_var_2;
int state_var_3;
int state_var_4;

do_task_t4_3();

do_task_t4_2();

do_task_t4_1();

14

This is too ”ad hoc”, though this is often used
in industry

You just don’t want to do this for large software
systems, say a few hundreds of control tasks

15

Concurrent Programming

16

Concurrent programming:
using sequential programming languages

Program your computation tasks, execute them
concurrently with OS support e.g. in LegOS

execi(foo1, ..., priority1, ...);
execi(foo2, ..., priority2, ...);
execi(foo3, ..., priority3, ...);

Will start three concurrent tasks running foo1, foo2, foo3

17

0ms 3ms 6ms 9ms 12ms

Cyclic vs. Concurrent

18

Programming Languages for
concurrent (and real time) programming

Let’s look at Ada95

Note that there is no reason why you can’t program a
real time system using C. But there is no language
support for concurrent tasks and real time features,
so you would have to provide them yourself using
e.g. exec(), sleep(20) etc, and most importantly, you
would have to fix scheduling

4

19

Ada95

It is strongly typed OO language, looks like Pascal

Originally designed by the US DoD as a language for
large safety critical systems i.e. Military systems

Ada83
Ada95 + RT annex + Distributed Systems Annex
Ada 2005

20

The basic structures in Ada

A large part in common with other languages
Procedures
Functions
Basic types: integers, characters, ...
Control statements: if, for, ..., case analysis

Abstract data type: Packages
Protected data type
Tasking: concurrency
Task communication: rendezvous
Real Time

21

Declarations and statements

Before each block, you have to declare (define) the
variables used, just like any sequential program

procedure PM (A : in INTEGER;
B: in out INTEGER;

C : out INTEGER) is
begin

B := B+A;
C := B + A;

end PM;

22

If, for, case: contrl-statements

if TEMP < 15 then
some smart code;

else
do something else..;

end if;

case TAL is
when <2 =>

PUT_LINE(”one or two”);
when >4 =>

PUT_LINE(”greater than 4);
end case;

for I in 1..12 loop
PUT(”in the loop”);

end loop;

23

Types (like in Pascal or any other fancy languages)

type LINE_NUMBER is range 1 .. 72
type WEEKDAY is (Monday, Tuesday, Wednesday);
type serie is array (1..10) of FLOAT;

type CAR is
record

REG_NUMBER : STRING(1 .. 6);
TYPE : STRING(1 .. 20);

end record;

24

Anything new in Ada?

5

25

Concurrent (and Real Time) Programming with Ada

Abstract data types: packages & protected data types
Consistent data sharing

Concurrency: multi-tasking
Task communication: Rendezvous & Shared Variables
Real time:

Delay constructs e.g. Delay(10), Delay until next-time
Scheduling according to timing constraints

26

”Package”: abstract data type in Ada

package definition ---- specification

packagebody ---- implementation

27

Package definition

Objects declared in specification is visible externally.

package MY_PACKAGE is
procedure myfirst_procedure;
procedure mysecond_procedure;

end MY_PACKAGE;

28

Packagebody

Implements package specification

(you probably want to use some other packages here e.g..)
with TEXT_IO;
use TEXT_IO;

package body MY_PACKAGE is
procedure myfirst_procedure is
begin

myfirst_procedure code here;
end;

function MAX (X,Y :INTEGER) return INTEGER is
begin

… …
end;

procedure mysecond_procedure is
begin

PUT_LINE(“Hello Im Ada Who are U”);
GET();

end;
end MY_PACKAGE;

29

Protected data type

protected x is
procedure read(x: out integer)
procedure write(x: in integer)
private

v: integer := 0 /* initial value */
protected body x is
procedure read(x: out integer) is
begin x:=v end
procedure write(x: in integer) is
begin v:= x end

30

You may solve the problem with semaphores!

6

31

Ada tasking: concurrent programming

Ada provides at the language level light-weight tasks. These
often refered to as threads in some other languages. The basic
form is:

task T is -------- specification
--- operations/entry or nothing
end T;

task body T is --------- implementation/body
begin
---- processing----
end T;

32

Example: the sequential case

procedure shopping is
begin
buy-meat;
buy-salad;
buy-wine;
end

33

The concurrent version

procedure shopping is

task get-salad;
task body get-salad is
begin
buy-salad;
end get-salad;

task get-wine;
task body get-wine is
begin
buy-wine;
end get-wine;
begin
buy-meat;
end

buy-salad and buy-wine
will be activated concurrently

here

And then run in parallel with
buy-meat

34

Creating Tasks

A sequential process is called a Task in Ada
Tasks may be declared at any program level
Created implicitly upon entry to the scope of their
declaration.
Possible to declare task types to start several task
instances of the same task type

35

example

procedure Example1 is
task type A_Type;
task B;
A,C : A_Type;

task body A_Type is
--local declarations for task A and C

begin
--sequence of statements for task A and C

end A_Type;

task body B is
--local declarations for task B

begin
--sequence of statements for task B

end B;

begin
--task A,C and B start their executions before the first statement of this procedure.

end Example1;

36

Task communication: two methods

Message passing using ”rendezvous”
entry and accept

Shared variables
protected objects/variables

7

37

Rendezvous

procedure foo

task T is
entry E(...in/out parameter...);

end;
task body T is
begin

accept E(... ...) do

------- sequence of statements
end E;

task user;
task body user is
begin

T.E(... ...)

end

begin
...
end

end foo;

T and user will be
started concurrently

38

Rendezvous

task body A is
begin
...
B.Call;
...
end A

task body B is
begin
...
accept Call do
....
end Call
...
end A

39

Buffer

task buffer is
entry put(X: in integer)
entry get(x: out integer)
end;

task body buffer is
v: integer;
begin
loop accept put(x: in integer) do v:= x end put;

accpet get(x: out integer) do x:= v end get;
end loop;
end buffer;

buffer.put(...) --- other tasks (users)!!
buffer get(...)

40

Choice: Select statement (choices)

task Server is
entry S1(…);
entry S2(…);

end Server;

task body Server is
…

begin
loop

--prepare for service
select

when <boolean expression> =>
accept S1(…) do

--code for this service
end S1;

or
accept S2(…) do

--code for this service
end S2;

or
terminate;

end select;
--do any house keeping
end loop;

end Server;

41

Timeout and message passing

loop
select

accept Call(T : temperature) do
New_temp:=T;

end Call;
or

delay 10.0;
--action for timeout

end select;
--other actions

end loop;

42

This is implemented with Entry queues
(the compiler takes care of this!)

Each task has a queue
A call to a task entry is inserted in the queue
The queue is a simple FIFO without priority
A task in an entry queue is inactive (waiting)
The first task in the queue will be ”accepted” first
(like the queue for a semaphore)

8

43

Conditional/Timed entry call

loop
--get temperature
select

Controller.Call(T); -- put new temperature
or

--other actions
end select;

end loop;

delay 0.5

44

Clocks

Provided by predefined library package (Calendar)
and an optional real-time facility.

Abstract datatype Time
Time provides a function Clock for reading the time

Primitive type Duration provided for time calculations.

45

Periodic task

task body Periodic_T is
Next_Release : Time;
ReleaseInterval : Duration := 10

begin
Next_Release := Clock + ReleaseInterval;
loop

--sample data and calculations
delay until Next_Release;
Next_Release := Next_Release +

ReleaseInterval;
end loop; 46

Task scheduling

Allow priorities to be assigned to tasks in task definition
Allow task dispatching policy to be set (Default: highest priority first)

task Controller is
pragma Priority(10)

end Controller

47

Task termination

A task in Ada will terminate if:
It completes execution of its body
It executes a terminate alternative of a select statement
It is aborted

